(4)(n+5)(n+2)=280^3

Simple and best practice solution for (4)(n+5)(n+2)=280^3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4)(n+5)(n+2)=280^3 equation:



(4)(n+5)(n+2)=280^3
We move all terms to the left:
(4)(n+5)(n+2)-(280^3)=0
We add all the numbers together, and all the variables
4(n+5)(n+2)-21952000=0
We multiply parentheses ..
4(+n^2+2n+5n+10)-21952000=0
We multiply parentheses
4n^2+8n+20n+40-21952000=0
We add all the numbers together, and all the variables
4n^2+28n-21951960=0
a = 4; b = 28; c = -21951960;
Δ = b2-4ac
Δ = 282-4·4·(-21951960)
Δ = 351232144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{351232144}=\sqrt{16*21952009}=\sqrt{16}*\sqrt{21952009}=4\sqrt{21952009}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-4\sqrt{21952009}}{2*4}=\frac{-28-4\sqrt{21952009}}{8} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+4\sqrt{21952009}}{2*4}=\frac{-28+4\sqrt{21952009}}{8} $

See similar equations:

| 12-2s=4 | | 10-4+6m-m=1+4m | | 8x+20=121 | | g(2)=5(2)-1 | | 15x-10(12x)-10(22)=20(9x)+20(37) | | 7x-6+5=84 | | 1/5+x=3/10 | | 3/10=x+1/5 | | 4b+2b=20 | | Y2+8x=0 | | 3y-5/4-4y=3-y-5/2 | | 4(5x−6+2)=19−7. | | w+41/8=8 | | 17/4x6=11/4x-6 | | 4/3z+8/z=1 | | 8-6p=6-7p | | X-2/5x=5-23/7 | | 3x-(2x-7)=-9 | | 2x=1141 | | x×76=608 | | 3(x-5)^2-48=0 | | X-3=5/3x+8 | | 23x-1+31x-2+75=180 | | 12x-2=x+17+80 | | 1-6n=-5n+1+8 | | |x-5|+7=15 | | 12+2/3a=23 | | -2x+3=+6x-8 | | 13-8+x=5 | | 14x+11=15x-5 | | -16=5n+3n | | x2x7Y=x |

Equations solver categories